454 research outputs found

    Controlled Anisotropic Deformation of Ag Nanoparticles by Si Ion Irradiation

    Full text link
    The shape and alignment of silver nanoparticles embedded in a glass matrix is controlled using silicon ion irradiation. Symmetric silver nanoparticles are transformed into anisotropic particles whose larger axis is along the ion beam. Upon irradiation, the surface plasmon resonance of symmetric particles splits into two resonances whose separation depends on the fluence of the ion irradiation. Simulations of the optical absorbance show that the anisotropy is caused by the deformation and alignment of the nanoparticles, and that both properties are controlled with the irradiation fluence.Comment: Submitted to Phys. Rev. Lett. (October 14, 2005

    Work in progress - towards an emotional learning model for intelligent gaming

    Get PDF

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let

    Numerical study of the effect of structure and geometry on van der Waals forces

    Full text link
    We use multipolar expansions to find the force on a gold coated sphere above a gold substrate; we study both an empty gold shell and a gold coated polystyrene sphere. We find four characteristic separation ranges. In the first region, which for the empty gold shell occurs for distances, d, smaller than the thickness of the coating, the result agrees with that on a solid gold sphere and varies as d^(-2); for larger separations there is a region where the force behaves as if the coating is strictly two dimensional and varies as d^(-5/2); in the third region the dependence is more unspecific; in the forth region when d is larger than the radius, the force varies as d^(-4). For homogeneous objects of more general shapes we introduce a numerical method based on the solution of an integral equation for the electric field over a system of objects with arbitrary shapes. We study the effect of shape and orientation on the van der Waals interaction between an object and a substrate and between two objects.Comment: 8 pages, presented in the QFEXT07 conference, submitted to Journal of Physics

    PlayPhysics: an emotional games learning environment for teaching Physics

    Get PDF

    Designing and evaluating emotional student models for game-based learning

    Get PDF
    • …
    corecore